Welcome to practical physicsPracticle physics - practical activities designed for use in the classroom with 11 to 19 year olds
 

Is the ring magnetised?

Class practicle

This experiment raises an interesting question. Can something be magnetised and not show poles?

Apparatus and materials

Steel rings, magnetized, 2

Iron filings in a pepper pot

Sheets of paper, 2

Health & Safety and Technical notes


Eye protection must be worn.

Read our standard health & safety guidance

The rings are small, flat rings, about 0.25 mm thick, 1 cm internal diameter and 2 cm external diameter. They are stamped out of thin steel and hardened by heating them to cherry red and then plunging them into cold water. The rings should be 'glass hard' and easily broken in the fingers.
 
The rings need to be magnetised with circular magnetism so that no poles are seen. For that, the circular magnetic field produced by a current in a straight wire is used. There needs to be a wire carrying a current of 100 amps going through the centre of the rings. Multiple wires (e.g. a wire carrying 10 amps threaded 10 times through the rings) may need to be used. To ensure even magnetisation with no poles, pass the wire through the centres of the rings; the rings could be placed on a wooden dowel which has a hole down the centre for the current-carrying wire.

 

Procedure


Is the ring magnetised

 

a Test the ring with iron filings. Does it have magnetic poles?
 
b Snap the ring in two with your fingers and test the pieces with filings.

 

Teaching notes


You might introduce this experiment by saying:
 
Can a ring of steel be magnetised even though it shows no sign of poles? Here is a ring of steel. I believe that I have magnetised it yet I can find no poles. You see no clumps of iron filings hanging on the ring when I dip it into iron filings. I find no magnetic field near it. When I put this compass needle nearby it is not affected. So I find no poles, no field and yet I thought I had magnetised it.
 
How does the theory help to explain the appearance of the poles at the break? (The 'basic magnets' are nose to tail around the ring and are not exposed until the ring is broken.)


 
This experiment was safety-checked in December 2004

 

Related guidance


Simple theory of a permanent magnetism